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Electricity: the Linchpin
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Data source: Iyer et al. 2017, GGCAM USA Analysis of U.S. Electric Power Sector Transitions (performed for the United States Mid-Century Strategy for 
Deep Decarbonization), Pacific Northwest National Laboratory; 2020 zero-carbon electricity supply from EIA Annual Energy Outlook 2019.
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TWIN CHALLENGES: ZERO CARBON, DOUBLE DEMAND

+120%

+80%

+50%
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Electrification Scenarios
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Electricity: the Linchpin

Data source: Difference between projected electricity demand in Iyer et al. 2017 and 2020 zero-carbon electricity supply from EIA Annual Energy Outlook 
2019. Assumes all 2020 generation can be sustained through 2050. Retirements of existing capacity would increase new zero-carbon generation needed.
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THE RAPID SWITCH: NEW ZERO CARBON ELECTRICITY NEEDED

+30 avg GW/yr

+23 avg GW/yr

+18 avg GW/yr
Total 2020 U.S. electricity generation

Electrification Scenarios
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Clean energy additions



Electricity: the Linchpin

Data source: Historical per capita deployment rates from MIT 2018, The Future of Nuclear in a Carbon Constrained World, scaled to based on projected 
2035 U.S. population of 364 million from U.S. Census Bureau.
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HISTORICAL PRECEDENTS (SCALED TO U.S. POPULATION)
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http://bit.ly/FirmLowCarbon
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Data source: Sepulveda, N., Jenkins, J.D., et al. (2018), “The role of firm low-carbon resources in deep 
decarbonization of electric power systems,” Joule 2(11).
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Data source: Sepulveda, N., Jenkins, J.D., et al. (2018), “The role of firm low-carbon resources in deep 
decarbonization of electric power systems,” Joule 2(11).
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NATURAL GAS WITH CCS MAY PLAY SIGNIFICANT ROLE

No CCS, Costly Nuclear NGCC+PCC (90%), Mid Nuclear Allam Cycle (100%), Low Nuclear
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NATURAL GAS WITH CCS IS OPERATED FLEXIBLY

No CCS, Costly Nuclear NGCC+PCC (90%), Mid Nuclear Allam Cycle (100%), Low Nuclear
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AN EXAMPLE OF FLEXIBLE CCS IN A ZERO CARBON ELECTRICITY SYSTEM
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Detailed case results for Northern system, very low cost scenario for all resources



ANNUAL GENERATION DURATION CURVE

Average Fleet-wide NG+CCS Capacity Factor: 66%
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UNIT COMMITMENT DISTRIBUTION
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Average Fleet-wide NG+CCS Commitment Factor: 80%



HOURLY DISPATCH DURING PEAK DEMAND WEEK (JULY)
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AN EXAMPLE OF FLEXIBLE CCS IN A ZERO CARBON ELECTRICITY SYSTEM
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ANNUAL GENERATION DURATION CURVE

Average Fleet-wide NG+CCS Capacity Factor: 46%
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UNIT COMMITMENT DISTRIBUTION

Average Fleet-wide NG+CCS Commitment Factor: 46%
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HOURLY DISPATCH DURING PEAK DEMAND WEEK (AUGUST)
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SOME OPEN QUESTIONS
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• What is the ideal “design space” for CCS from the electricity system perspective? What set of 
cost and performance characteristics are most attractive/make CCS most competitive?

• Capital and fixed O&M costs; Capture efficiency; Heat rate; Ramping rates;
Minimum turndown / stable output; Cycling costs; Cycling time

• How does availability of other competing or complementary resources (e.g. nuclear, storage, 
flexible demand, wind vs. solar heavy systems) affect the ideal design space for CCS?

• How valuable is it to de-couple parasitic loads for the capture process to enhance flexibility 
(e.g. storing oxygen for oxyfuel combustion, storing saturated amines for later CO2 removal)

• Is it valuable to have a variable capture rate (with tradeoffs in heat rate)? – Is it worth achieving 
a lower turndown level by increasing capture rate at a greater efficiency penalty vs. cycling off 
the plant?

• Are there cost-effective/competitive opportunities for coupling thermal or electrical storage?
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